
CS 4530: Fundamentals of Software Engineering

Module 5: Interaction-Level Design Patterns

Adeel Bhutta and Mitch Wand
Khoury College of Computer Sciences

1

© 2024-2025 Released under the CC BY-SA license

https://creativecommons.org/licenses/by-sa/4.0/

Learning Goals for this Lesson
• By the end of this lesson, you should be able to

• Explain how patterns capture common solutions and
tradeoffs for recurring problems.

• Explain and give an example of each of the following:
• The Data-Pull pattern
• The Listener or Observer pattern
• The Callback or Handler pattern
• The Typed-Emitter pattern
• The Singleton pattern

2

What is a Pattern?
• A Pattern is a summary of a standard solution (or

solutions) to a specific class of problems.
• A pattern should contain

• A statement of the problem being solved
• A solution of the problem
• Alternative solutions
• A discussion of tradeoffs among the solutions.

• For maximum usefulness, a pattern should have a
name.

• So you can say “here I’m using pattern P” and people
will know what you had in mind.

3

Patterns help communicate intent
• If your code uses a well-known pattern, then the

reader has a head start in understanding your code.

4

Patterns are intended to be flexible
• We will not engage in discussion about whether a

particular piece of code is or is not a “correct”
instance of a particular pattern.

5

This week we will talk about the interaction
scale

6

• key questions: what are the pieces? how do they fit
together to form a coherent whole?

The Structural Scale

• key questions: how do the pieces interact? how are
they related?

The Interaction Scale

• key question: how can I make the actual code easy
to test, understand, and modify?

The Code Scale

Design at the Interaction Level corresponds
to “OOD Design Patterns”
• Four guys in the 90’s wrote a book that lists a lot of

patterns.
• But this is not the be-all and end-all of patterns
• We’ll see patterns at lots of different levels.

7

The Interaction Scale: Examples
1. The Data-Pull Pattern
2. The Observer or Listener Pattern*
3. The Typed-Emitter Pattern
4. The Callback Pattern
5. The Singleton Pattern*

8

*These are “official Design Patterns”
that you will see in Design Patterns
Books

Information Transfer: Push vs Pull

9

class Producer {
 theData : number
}

class Consumer {
 neededData: number
 doSomeWork () {
 doSomething(this.neededData)
 }
}

• How can we get a
piece of data from
the producer to
the consumer?

Pattern 1: consumer asks producer
(The “data-pull" pattern)

10

class Producer {
 theData: number
 getData() { return this.theData }
}

class Consumer {
 constructor(private producer: Producer) { }
 neededData: number
 doSomeWork() {
 this.neededData = this.producer.getData()
 doSomething(this.neededData)
 }
}

• The consumer
knows about the
producer

• The producer has
a method that the
consumer can call

• The consumer
asks the producer
for the data

Example: Interface for a pulling clock
• The interface for a

simple clock

11

export default interface IpullingClock {

 /** sets the time to 0 */
 reset():void

 /** increments the time */
 tick():void

 /** a getter for the current time */
 time: number
}

PullingClocks/IPullingClock.ts

Testing the clock and the client

12

import { SimpleClock, ClockClient } from "./simpleClockUsingPull";

test("test of SimpleClock", () => {
 const clock1 = new SimpleClock
 expect(clock1.time).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(clock1.time).toBe(2)
 clock1.reset()
 expect(clock1.time).toBe(0)
})

PullingClocks/simpleClockUsingPull.test.ts

test("test of ClockClient", () => {
 const clock1 = new SimpleClock
 expect(clock1.time).toBe(0)
 const client1 = new ClockClient(clock1)
 expect(clock1.time).toBe(0)
 expect(client1.getTimeFromClock()).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(client1.getTimeFromClock()).toBe(2)
})

simpleClockUsingPull.ts

13

import IClock from "./IPullingClock";

export class SimpleClock implements IClock {
 private time = 0
 public reset () : void {this.time = 0}
 public tick () : void { this.time++ }
 public get time(): number { return this.time }
}

export class ClockClient {
 constructor (private theclock:IClock) {}
 getTimeFromClock ():number {
 return this.theclock.time
 }
}

PullingClock/simpleClockUsingPull.ts

SimpleClock is the Producer

ClockClient is the Consumer

But there's a potential problem here.
• What if the clock ticks once per second, but there

are dozens of clients, each asking for the time every
10 msec?

• Our clock might be overwhelmed!
• Can we do better for the situation where the clock

updates rarely, but the clients need the values
often?

14

Pattern 2: producer tells consumer ("push")

15

class Producer {
 constructor(private consumer: Consumer) { }
 theData: number
 updateData(input) {
 this.theData = doSomethingWithInput(input)
 // notify the consumer about the change:
 this.consumer.notify(this.theData)
 }
}

class Consumer {
 neededData: number
 notify(dataValue: number) {
 this.neededData = dataValue
 }
 doSomeWork() {
 doSomething(this.neededData)
 }
}

• Producer notifies
the consumer
whenever the data
is updated

• Producer knows
about the
consumer. Probably
there will be more
than one consumer

This is called the Listener or Observer
Pattern
• Also called "publish-subscribe pattern"
• The object being observed (the “subject”) keeps a

list of the objects who need to be notified when
something changes.

• subject = producer = publisher

• When a new object (i.e., the “consumer”) wants to
be notified when the subject changes, it registers
with ("subscribes to") the
subject/producer/publisher

• observer = consumer = subscriber = listener

16

Interface for a clock using the Push pattern

17

export interface IPushingClock {

 /** resets the time to 0 */
 reset():void

 /**
 * increments the time and sends a .nofify message with the
 * current time to all the consumers
 */
 tick():void

 /** adds another consumer and initializes it with the current time */
 addListener(listener:IPushingClockClient):number
}

PushingClocks/IPushingClockAndClients.ts

Interface for a clock listener

18

interface IPushingClockClient {
 /**
 * * @param t - the current time, as reported by the clock
 */
 notify(t:number):void

}

PushingClocks/IPushingClockAndClients.ts

Tests

19

test("single observer", () => {
 const clock1 = new PushingClock()
 const observer1
 = new PushingClockClient(clock1)
 expect(observer1.time).toBe(0)
 clock1.tick()
 clock1.tick()
 expect(observer1.time).toBe(2)
 })

 test("Multiple Observers", () => {
 const clock1 = new PushingClock()
 const observer1
 = new PushingClockClient(clock1)
 const observer2
 = new PushingClockClient(clock1)
 const observer3
 = new PushingClockClient(clock1)
 clock1.tick()
 clock1.tick()
 expect(observer1.time).toBe(2)
 expect(observer2.time).toBe(2)
 expect(observer3.time).toBe(2)
 })

PushingClocks/PushingClock.test.ts

A PushingClock class

20

export class PushingClock implements IPushingClock {
 private observers: IPushingClockClient[] = []
 public addListener(obs:IPushingClockClient): number {
 this.observers.push(obs);
 return this.time
 }
 private notifyAll() : void {
 this.observers.forEach(obs => obs.notify(this.time))
 }
 private time = 0
 reset() : void { this.time = 0; this.notifyAll() }
 tick() : void { this.time++; this.notifyAll() }

}

PushingClocks/IPushingClockAndClients.ts

A Client

21

export class PushingClockClient implements IPushingClockClient
{
 private time:number
 constructor (theclock:IPushingClock) {
 this.time = theclock.addListener(this)
 }

 notify (t:number) : void {this.time = t}
 getTime () : number {return this.time}

}

PushingClocks/IPushingClockAndClients.ts

Interface for a clock listener

22

We could have called this onTick

interface IPushingClockClient {
 /**
 * * @param t - the current time, as reported by the clock
 */
 notify(t:number):void

}

PushingClocks/IPushingClockAndClients.ts

The observer gets to decide what to do with
the notification

23

export class DifferentClockClient implements IPushingClockClient {

 /** TWICE the current time, as reported by the clock */
 private twiceTime:number

 constructor (theclock:IPushingClock) {
 this.twiceTime = theclock.addListener(this) * 2
 }

 /** list of all the notifications received */
 public readonly notifications : number[] = [] // just for fun

 notify(t: number) : void {
 this.notifications.push(t)
 this.twiceTime = t * 2 }

 time : number { return (this.twiceTime / 2) }
}

PushingClocks/IPushingClockAndClients.ts

Better test this, too

24

test("test of DifferentClockClient", () => {
 const clock1 = new PushingClock()
 const observer1 = new DifferentClockClient(clock1)
 expect(observer1.time).toBe(0)
 clock1.tick()
 expect(observer1.time).toBe(1)
 clock1.tick()
 expect(observer1.time).toBe(2)
 })

PushingClocks/PushingClock.test.ts

Tests for .notifications method

25

test("DifferentClockClient accumulates the times correctly", ()
=> {
 const clock1 = new PushingClock()
 clock1.tick()
 const differentClient = new DifferentClockClient(clock1)
 expect(differentClient.time).toBe(1)
 expect(differentClient.notifications).toEqual([])
 clock1.tick()
 clock1.tick()
 clock1.tick()
 expect(differentClient.time).toBe(4)
 expect(differentClient.notifications).toEqual([2, 3, 4])
 })

PushingClocks/IPushingClockAndClients.ts

Push vs. Pull: Tradeoffs

PULL PUSH
The Consumer knows about the
Producer

Producer knows about the Consumer(s)

The Producer must have a method that
the Consumer can call

The Consumer must have a method that
producer can use to notify it

The Consumer asks the Producer for the
data

Producer notifies the Consumer whenever the
data is updated

Better when updates are more frequent
than requests

Better when updates are rarer than requests

26

Details and Variations
• How does the consumer get an initial value?

• Here we’ve had the producer supply it when the
consumer registers

• Should there be an unsubscribe method?
• What data should be passed with the notify

message?
• How does the producer store its registered

consumers?
• If many consumers, this could be an issue

27

Pattern #3: The callback or handler pattern
• Instead of requiring the client to supply a 'notify'

method,
• the server constructs the client and gives it a

function to call when a certain event happens
• Typically, this will be a function inside the server
• We call this function the callback or handler for the

client's action.
• This pattern is used all the time in REACT.

28

Example: Expected Behavior

29

describe('handler passing', () => {

 it('works', () => {

 const server = new Parent()
 const client1 = server.newChild()
 const client2 = server.newChild()

 expect(server.log).toEqual([])
 client1.click()
 expect(server.log).toEqual([1])
 client2.click()
 expect(server.log).toEqual([1, 2])
 client1.click()
 expect(server.log).toEqual([1, 2, 1])
 })

})

CallBacks/callBackExample.test.ts

The Code

30

export class Child {
 private _onClick: () => void

 constructor (onClick: () => void)
 { this._onClick = onClick }

 public click ()
 { this._onClick() }
}

export class Parent {
 // the next free ID for a client
 private _nextID = 1

 // the log keeps track of the clicks by ID
 private _log: number[] = []

 public get log(): number[] { return this._log }
 private pushToLog(id: number) { this._log.push(id)}

 public newChild(): Child {
 const thisID = this._nextID
 const onClick = () => { this.pushToLog(thisID) }
 this._nextID++
 return new Child(onClick.bind(this))
 }
}

CallBacks/callBackExample.ts

The Code (Alternate Version)

31

export class Parent {

 /** the total number of times the button
 * (in any of the children) has been pushed
 */
 private _nPushes = 0

 public get nPushes(): number {
 return this._nPushes
 }

 public newChild (): Child {
 return new Child (() => this._nPushes++)
 }
}

export class Child {

 private handlePush: () => void

 constructor (_handlePush: () => void) {
 this.handlePush = _handlePush
 }

 public buttonPush () {
 this.handlePush()
 }
}

The handler for buttonPushes

Pattern #4: The Typed Emitter Pattern
• What if the data source wants to notify its listeners

with several different kinds of messages?
• Maybe with different data payloads?
• And what if we want to take advantage of type-

checking?

32

If the data source needs to push different kinds of
values, then typed emitters may be useful

33

import { EventEmitter } from "events"
import TypedEmitter from "typed-emitter"

type ClockEvents = {
 reset: () => void
 tick: (time: number) => void, // carries the current time
}

EmittingClocks/IEmittingClockAndClients.ts

• Here reset and tick are different kinds of events.

Using an emitter

34

class SampleEmitterServer {
 private emitter = new EventEmitter as TypedEmitter<ClockEvents>
 public getEmitter():TypedEmitter<ClockEvents> {return this.emitter}
 public demo() {
 this.emitter.emit('tick', 1);
 this.emitter.emit('reset')
 }
}

class SampleEmitterClient {
 constructor (server:SampleEmitterServer) {
 const emitter = server.getEmitter()
 emitter.on('tick', (t:number) => {console.log(t)})
 emitter.on('reset', () => {console.log('reset')})
 }
}

EmittingClocks/IEmittingClockAndClients.ts

When an event occurs: emit()

When you need to register: on()

Interface for a clock using an emitter

35

export interface IEmittingClock {

 /** resets the time to 0 */
 reset():void

 /**
 * increments the time and sends a .nofify message with the
 * current time to all the consumers
 */
 tick():void

 /** adds another listener; returns the clock's emitter */
 addListener(): TypedEmitter<ClockEvents>
}

EmittingClocks/IEmittingClockAndClients.ts

EmittingClock

36

export class EmittingClock implements IEmittingClock {

 private time = 0

 private emitter = new EventEmitter as TypedEmitter<ClockEvents>

 reset(): void { this.time = 0; this.emitter.emit('reset') }

 tick(): void { this.time++; this.emitter.emit('tick', this.time) }

 public addListener(): TypedEmitter<ClockEvents> { return this.emitter }

}

EmittingClocks/IEmittingClockAndClients.ts

EmittingClockClient

37

export class EmittingClockClient {
 private time = 0 // time is not accurate until the next tick
 constructor(theclock: IEmittingClock) {
 const clock: TypedEmitter<ClockEvents> = theclock.addListener()
 // set up event listeners
 clock.on('tick', (t: number) => { this.time = t })
 clock.on('reset', () => { this.time = 0 })
 }

 getTime(): number { return this.time }
}

EmittingClocks/IEmittingClockAndClients.ts

Emitter Pattern has many variations

38

export interface EventEmitter {

 /** Run callback every time event is emitted */
 on(event, callback);
 /** Run callback when event is emitted just for the first time */
 once(event, callback);
 /** Removes the callback for event */
 off(event, callback);
 /** Removes all callbacks for event */
 off(event);
 /** Removes all callbacks for all events */
 off();
 /** The event callbacks are called with the passed arguments */
 emit(type, ... args);
}

Pattern #5: The Singleton Pattern
• Maybe you only want one clock in your system.
• You can't just say "new Clock" because that always

creates a new object of class Clock.
• We'll solve this in two steps.

39

Introduce a clock factory

40

function testClock(clock: IClock, clockName: string) {
 clock.reset()
 clock.tick()
 expect(clock.time).toBe(1)
 clock.tick()
 expect(clock.time).toBe(2)
 clock.reset()
 expect(clock.time).toBe(0)
}

describe('the clock factory should build some working clocks', () => {
 it('works', () => {
 const clock1 = SimpleClockFactory.createClock()
 testClock(clock1, 'clock1')
 const clock2 = SimpleClockFactory.createClock()
 testClock(clock2, 'clock2')
 })
})

Singletons/simpleClockFactory.test.ts

But we said we wanted only one clock!
• No problem!
• Just modify the factory so it only creates a clock

once, and after that just returns the same one over
and over again.

41

Here’s the behavior we expect

42

import ClockFactory from './singletonClockFactory'

test("actions on clock1 should be visible on clock2", () => {
 const clock1 = ClockFactory.instance()
 const clock2 = ClockFactory.instance()
 expect(clock1.time).toBe(0)
 expect(clock2.time).toBe(0)
 clock1.tick()
 clock2.tick()
 expect(clock1.time).toBe(2)
 expect(clock2.time).toBe(2)
 clock1.reset()
 expect(clock1.time).toBe(0)
 expect(clock2.time).toBe(0)

})

Singletons/singletonClockFactory.test.ts

Solution: Use a first-time through switch
and a private constructor

43

import IClock from './IPullingClock'
import { SimpleClock } from './simpleClockUsingPull';

export default class SingletonClockFactory {
 private static theClock : IClock | undefined
 private constructor () {SingletonClockFactory.theClock = undefined}

 public static instance () : IClock {
 if (SingletonClockFactory.theClock === undefined) {
 SingletonClockFactory.theClock = new SimpleClock
 }
 return SingletonClockFactory.theClock
 }
}

Singletons/singletonClockFactory.ts

Describing your design using these
vocabulary words
When I create an object that needs a clock, I ask the
master clock factory to issue me a clock, and then I have
my new object register itself with the clock.
The master clock updates my object whenever the
master clock changes.
The master clock also sends my object an update
message when it registers, so my object will always have
the latest time.

44

Discussing your design

45

I have a lot of objects, and
they each check the time
very often. If they were
constantly sending
messages to the master
clock, that would be a big
load for it. I sat down with
Pat, who is building the
master clock, and we
agreed on this design.

Why did you choose this
design?

Discussing your design (2)

46

Pat told me that the master
clock is a singleton, so they
will all be getting the same
time.

How do you know that all of
your objects will get the right
time?

The Discussion (3)

47

That's something that
happens in the module that
exports the master clock.
Pat is building that module.
Pat says it's not hard, but
they will show me how to do
it in a couple of weeks.

Who is responsible for
keeping the master clock up
to date?

The Discussion (4)

48

The clock factory exports a
class with an interface that
only allows me to register.
The interface doesn’t
provide me with a method
for ticking the clock.

What's to prevent you from
ticking the master clock
yourself?

Learning Goals for this Lesson
• Now that we have come to the end of this lesson,

you should be able to
• Explain how patterns capture common solutions and

tradeoffs for recurring problems.
• Explain and give an example of each of the following:

• The Data-Pull pattern
• The Listener pattern
• The Typed-Emitter pattern
• The Handler-Passing pattern
• The Singleton pattern

49

	CS 4530: Fundamentals of Software Engineering��Module 5: Interaction-Level Design Patterns
	Learning Goals for this Lesson
	What is a Pattern?
	Patterns help communicate intent
	Patterns are intended to be flexible
	This week we will talk about the interaction scale
	Design at the Interaction Level corresponds to “OOD Design Patterns”
	The Interaction Scale: Examples
	Information Transfer: Push vs Pull
	Pattern 1: consumer asks producer �(The “data-pull" pattern)
	Example: Interface for a pulling clock
	Testing the clock and the client
	simpleClockUsingPull.ts
	But there's a potential problem here.
	Pattern 2: producer tells consumer ("push")
	This is called the Listener or Observer Pattern
	Interface for a clock using the Push pattern
	Interface for a clock listener
	Tests
	A PushingClock class
	A Client
	Interface for a clock listener
	The observer gets to decide what to do with the notification
	Better test this, too
	Tests for .notifications method
	Push vs. Pull: Tradeoffs
	Details and Variations
	Pattern #3: The callback or handler pattern
	Example: Expected Behavior
	The Code
	The Code (Alternate Version)
	Pattern #4: The Typed Emitter Pattern
	If the data source needs to push different kinds of values, then typed emitters may be useful
	Using an emitter
	Interface for a clock using an emitter
	EmittingClock
	EmittingClockClient
	Emitter Pattern has many variations
	Pattern #5: The Singleton Pattern
	Introduce a clock factory
	But we said we wanted only one clock!
	Here’s the behavior we expect
	Solution: Use a first-time through switch and a private constructor
	Describing your design using these vocabulary words
	Discussing your design
	Discussing your design (2)
	The Discussion (3)
	The Discussion (4)
	Learning Goals for this Lesson

